
Robustness and Pricing with
Uncertain Growth

Marco Cagetti
University of Virginia

Lars Peter Hansen
University of Chicago

Thomas Sargent
Stanford University

Noah Williams
Princeton University

We study how decision-makers’ concerns about robustness affect prices and quantities
in a stochastic growth model. In the model economy, growth rates in technology are
altered by infrequent large shocks and continuous small shocks. An investor observes
movements in the technology level but cannot perfectly distinguish their sources. Instead
the investor solves a signal extraction problem. We depart from most of the macro-
economics and finance literature by presuming that the investor treats the specification
of technology evolution as an approximation. To promote a decision rule that is robust
to model misspecification, an investor acts as if a malevolent player threatens to perturb
the actual data-generating process relative to his approximating model. We study how
a concern about robustness alters asset prices. We show that the dynamic evolution of
the risk-return trade-off is dominated by movements in the growth-state probabilities and
that the evolution of the dividend-price ratio is driven primarily by the capital-technology
ratio.

This article shows how decision-makers’ concerns about model misspecifi-
cation can affect prices and quantities in a dynamic economy. We use the
familiar stochastic growth model of Brock and Mirman (1972) and Merton
(1975) as a laboratory. Technology is specified as a continuous-time hid-
den Markov model (HMM), inducing investors to make inferences about the
growth rate. They form their opinions about the growth rate from current
and past observations of technology that are clouded by concurrently evolv-
ing small shocks modeled as Brownian motions. We show how investors’
desire to make their decision rules robust to misspecification of the evo-
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lution of technology alters security prices and the intertemporal resource
allocation.

Following the control theory literature, we formulate the robust decision-
making process as a two-player game. For a game-theoretic approach to
robust decision making see Basar and Bernhard (1995). For the recursive
specification used here see Cagetti et al. (2000). An investor has somehow
constructed a model of the technology shock process, but suspects that model
to be misspecified. The investor wants to maximize the expected value of a
discounted utility function, but doubting his approximating model, is unsure
about what probability distribution to use to form mathematical expectations.
To make decisions that perform well under a variety of models, the deci-
sion maker imagines that a second malevolent agent will draw technology
shocks from a model that is distorted relative to his approximating model.
The malevolent agent minimizes the decision-maker’s objective function by
choosing a model from a large set surrounding the approximating model. To
represent the idea that the decision maker views his model as a good approx-
imation, we restrict the surrounding models to be close to the approximating
model, where closeness is measured by a statistical discrimination criterion
of the gap between a distorted model and the approximating model.1

The malevolent agent in the decision problem provides an operational way
to promote robustness by systematically exploring the types of model mis-
specification to which a proposed decision rule is especially fragile.2 As
argued by Huber (1981) in his discussion of an optimal robust statistical
procedure:

[A]s we defined robustness to mean insensitivity with regard to small
deviations from assumptions, any quantitative measure of robustness must
somehow be concerned with the maximum degradation of performance
possible for an �-deviation from the assumptions. The optimally robust
procedure minimizes this degradation and hence will be a minimax proce-
dure of some kind.

In this article we model investor preferences using a penalty approach that
lets investors explore deviations from an approximating model of the technol-
ogy evolution.3 Formally, we append a term to the discounted expected utility

1 As is typical with rational expectations models, we do not explore formally how investors arrive at an approx-
imating model, but we do presume that the remaining models that are entertained are difficult to distinguish
from the approximating model given historical data. A rational expectations counterpart model, however,
would remove model approximation error from consideration.

2 Economists use a max-min formulation when they use Lagrange multipliers. Lagrange multipliers allow
us to convert a constrained maximization problem into an unconstrained maximum-minimum problem. The
constraint is imposed by supposing there exists a fictitious malevolent agent whose aim it is to punish the
original decision maker when the constraint is violated. This device for imposing a constraint is algorithmically
convenient. So is our two-agent formulation of robustness.

3 Although we use ideas from standard robust control theory, we modify them because our approximating
models are stochastic. Among the few examples of stochastic robust control models are James (1982), who
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that penalizes departures from a reference or approximating model. Penalty
methods are common in both the robust control theory and statistics litera-
ture. Strictly speaking they imply preferences that are distinct from those that
limit exploration only to �-deviations as suggested by Hurber (1981) in the
above quote, but the two approaches are related. [for example, see Dupuis,
James, and Petersen (1998) and Hansen et al. (2001)]. We use a penalty
function that tolerates only perturbations from the approximating model that
are difficult to detect statistically. This leads us to use a log-likelihood ratio-
based penalty term called relative entropy, appropriately adjusted to account
for the HMM structure.4

Concern about model misspecification makes investors more cautious and
enlarges measured risk premia. It enhances the usual precautionary motive.5

Our model economy is a continuous-time stochastic growth economy. The
technology shock process has a two-state hidden Markov (HMM) structure.
Our quantitative estimates confirm the findings of Hamilton (1989) and others
that a two-state HMM model for the post-World War II United States recovers
states that measure short recessions and sustained booms. Because it can be
difficult to distinguish these two states from the observed technology level,
we investigate the consequences of concealing the growth state from the
decision maker. Our specification of the technology shock process formally
follows Wonham (1964), David (1997), and Veronesi (1999). The latter two
articles study pricing in production economies with linear technologies and
hidden dividend growth processes.6 Hidden information gives us a tractable
setting to study what happens when the quality of investors’ information
fluctuates over time. This mechanism alone can alter the time-series evolution
of the market risk prices and dividend-price ratios, but it cannot produce large
enough risk premia to be empirically plausible. It is for this reason that we
turn to robustness as a means of changing asset price predictions.

We decentralize the robust version of the stochastic growth model by
computing shadow prices from a robust resource allocation problem. The
continuous-time specification lets us use representations of local prices to
assemble asset prices for intervals of time. The local prices include both the
instantaneous interest rate and the risk price of the Brownian motion incre-
ment. Our model contributes an additional component of the factor risk price

studies deterministic differential games of robust decision making as small noise limits, and Dupuis, James,
and Petersen (1998). A stochastic approximating model is essential for our application to finance. In
emphasizing this structure we follow Hansen, Sargent, and Tallarini (1999), Maenhout (1999), and Anderson,
Hansen, and Sargent (2000).

4 Examples of robust control of deterministic systems with partial observations are James, Baras, and Elliott
(1994) and James and Baras (1996).

5 The precautionary motive is already present in models without quadratic preferences.
6 David (1997) studies a model in which production is linear in the capital stocks with technology shocks that

have hidden growth rates. Veronesi (1999) studies a permanent income model with a riskless linear technology.
Dividends are modeled as an additional consumption endowment. Hidden information was introduced into
asset pricing models by Detemple (1986), who considers a production economy with Gaussian unobserved
variables.
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that is attributable to a concern about model misspecification. This compo-
nent also occurs in the continuous-time articles of Anderson, Hansen, and
Sargent (2000) and Chen and Epstein (2001), and as an approximation in the
discrete-time analysis of Hansen, Sargent, and Tallarini (1999).

Quantitatively, our two-state HMM specification has the following implica-
tions for intertemporal prices and allocations. The investor’s signal extraction
problem makes one state variable be the probability that the current growth
rate is low. Another state variable is the ratio of capital to technology. We
show that:

• The robust motive for precautionary savings increases the capital stock.
This motive can be offset by making investors discount the future more.

• A concern about model misspecification adds a quantitatively important
component to the risk-return trade-off as measured by financial econo-
metricians. The component of risk prices due to robustness is particu-
larly sensitive to growth-state probabilities and is largest when, under
the approximating model, investors are most unsure of the hidden state.

• A concern about robustness causes price-dividend ratios to drop closer
to the level observed in postwar data. In our model economy, these ratios
are particularly sensitive to movements in capital-technology ratio. They
respond very little to changes in the growth-state probabilities. The
actual time-series trajectories for price-earnings ratios differ substan-
tially from those implied by the model.

The first finding extends a result of Hansen, Sargent, and Tallarini (1999)
to a nonlinear economy. Without prior information about the subjective dis-
count factor, decision-makers’ concerns about robustness can’t be detected
from macroeconomic quantities alone. The other two findings have important
counterparts in a corresponding HMM rational expectation economy in which
investors only care about risk. In such economies, market risk prices respond
primarily to changes in growth-state probabilities, while dividend-price ratios
are driven primarily by movements in the capital-technology ratio.

The article is structured as follows. Section 1 presents the economic envi-
ronment. Section 2 describes the information structure and the signal extrac-
tion problem. Section 3 describes model distortions and measures of model
misspecification. Section 4 presents differential equations for value functions
that characterize equilibria of the hidden information games. Section 5 dis-
cusses implications for time series of capital stocks. Section 6 uses the link
between statistical detection and robustness to restrict the degree of robust-
ness in the asset calculations. Section 7 shows how risk-return trade-offs
change over time. Section 8 displays the implied dividend-price ratios.

1. The Economy

We use a continuous-time formulation of a Brock and Mirman (1972) eco-
nomy with production, capital accumulation, and stochastic productivity
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growth. There are two types of technology shocks: Brownian motion incre-
ments, and infrequent changes in the drifts of the Brownian motion modeled
as a jump process. Investors observe productivity levels but the drift is hid-
den. The technology process is thus a special case of an HMM, confronting
investors with a signal extraction problem. Current and past data must be used
to make inferences about technological growth.

We use this model to study the precautionary motive for savings induced
by a concern about robustness; the evolution of the measured market price
of “risk”; and the evolution of price-dividend ratios.

1.1 Previous literature
The quantitative component of our investigation is designed to show how
robustness alters the implications of the simple growth model familiar to
economists. In the absence of robustness, the empirical implications of this
model for consumption and investment are defective [e.g., see Watson (1993)]
and the implied return to capital shows very little variation relative, for
instance, to value-weighted returns on equity [e.g., see Cochrane (1991) and
Rouwenhorst (1995)]. The absence of return variability is even more stark in
the continuous-time embedding of this model. As noted by Merton (1975),
the return to capital becomes locally riskless.

One remedy is to make capital locally risky. While this will enhance return
variability, it may also result in excessive volatility in aggregate quantities. In
addition, we might follow Boldrin, Christiano, and Fisher (2001) and others
by introducing additional technological frictions and temporal nonseparabil-
ities in preferences. Instead of mixing robustness with these other ways to
complicate the short-run dynamics, we study the role of robust decision mak-
ing in a simpler framework.

When looking at the asset pricing implications, we will be less ambi-
tious than Boldrin, Christiano, and Fisher (2001) and Hansen and Singleton
(1983),7 and will study only the local or instantaneous risk-return relation and
the time-series behavior for dividend-price ratios. Even the risk-return rela-
tion looks puzzling for a model without robust decision makers because the
implied market price is too small to be plausible from the vantage point
of aggregate models [Hansen and Jagannathan (1991) and Cochrane and
Hansen (1992)]. As in Hansen, Sargent, and Tallarini (1999), Maenhout
(1999), Anderson, Hansen, and Sargent (2000), and Chen and Epstein (2001)
we explore the effects of a concern about model uncertainty on the measured
risk premium in security market returns. We add to this literature by look-
ing at the time-series variation both of risk prices and of model uncertainty
prices. We show how disguising mean growth rates from investors can alter
the time-series properties of the risk premia.

7 We look at only a subset of the restrictions that they studied.
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To study dividend-price ratios we will eventually posit an exogenous div-
idend claim that is distinct from the marginal product of capital. In this
we imitate David and Veronesi (1999) and Veronesi (2000) except that we
have an additional state variable (capital) and also explore implications for
robustness.

1.2 Technology
We assume a Cobb–Douglas production function

f �K�L�= K��YL�1−��

where K is the capital stock, L is the labor supply, and Y is the labor-
augmenting technology parameter. For simplicity, we fix the total labor sup-
ply L at 1. Y evolves exogenously according to the continuous-time process

dyt = st · �̂ dt+�y dBt� (1)

where B is a standard Brownian motion, y= logY , and s evolves according to
a finite-state Markov chain. It can assume n possible values, U1�U2� � � � �Un,
where Uj is a vector containing 1 in position j and zero everywhere else. �̂ is
an n-dimensional vector that contains all possible values of the mean growth
rate of the technology shock; sj · �̂ is therefore the growth rate in state j .
The model of the technology shock can be viewed as a continuous-time
embedding of the regime-shift models of Baum and Petrie (1966), Sclove
(1983) and Hamilton (1989).8

Let � be the depreciation rate of capital. The evolution equation for capital
is given by

dKt =
[
�Yt�

1−��Kt�
�−Ct−�Kt

]
dt� (2)

where Ct is the instantaneous consumption flow. By construction, capital is
locally predictable.

The technological process has a unit root in logarithms and is therefore
nonstationary. As we show later, the ratio of capital to effective labor, kt =
Kt/Yt , and that of consumption to effective labor, ct = Ct/Yt , are stationary.
We will therefore represent the problem in terms of the variables kt and yt .

8 An important qualification is that volatility is independent of the Markov chain state. Thus we are ruling
a process with high volatility in low growth or recession states. Baum and Petrie (1966) and Bonomo and
Garcia (1996) allow for the state st to alter volatility and find it to be empirically plausible for postwar
output data and century-long consumption data. We preclude this dependence in order that our state st remain
difficult to detect from high-frequency data. Volatility changes are revealed by continuous data records.
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Applying Ito’s lemma, we get

dkt = �k�c� k� s�dt+�k�k�dBt� (3)

where the drift of Equation (3) is

�k�c� k� s�≡ k�− c−
[
s · �̂+�− ��y�

2

2

]
k

and the local standard deviation is

�k�k�=−�yk�

1.3 Evolution of technology growth states
The finite-state Markov chain for s has an intensity matrix

A= N�Q− I��

where N is a diagonal matrix of jump intensities, each of which dictates the
jump frequency conditioned on the current state. We let  i denote the jump
intensity for state i. The matrix Q is a transition matrix. Each row specifies
the probability distribution of the jump location conditioned on a jump taking
place. We normalize the transition matrix Q so that its "i� i# entry is zero.
That is, conditioned on a jump from state i taking place, there is no chance
that the state will remain the same.9 The element "i� j# of A will be denoted
by aij , and ai� i =−∑

j� j �=i aij .
The transition probabilities over any interval of time can be constructed

from the intensity matrix A via the exponential formula

T& = exp�&A�� (4)

and the intensity matrix can be deduced from the transition matrices by
computing the right derivative of T& at & = 0.

2. The Hidden Information Problem

We consider models in which the mean growth rate st · �̂ is hidden to investors.
Thus they must solve a signal extraction problem by using past levels of tech-
nology shock increments to forecast mean growth rates. Before solving the
stochastic growth model under the alternative games, we display the solution
to the signal extraction problem. A separation property of recursive predic-
tion and control in our resource allocation games allows us first to solve the

9 There are other normalizations that might be adopted. For instance, we could make the jump intensity constant
across states, provided that conditioned on a jump taking place, there is a positive probability of remaining in
the same state. The constant intensity specification is sometimes used because it simplifies the characterization
of the stationary distribution.
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signal extraction problem using the approximating model and then to use the
filtering equations as an input into the solution of the games. The details of the
decision problem that justify separation are described in Cagetti et al. (2000).

2.1 General formulation
Since the state variable s is not observed, the decision maker has to infer
information about the current state of the system by using the current and
past observations of y. This hidden state model is due to Wonham (1964),
and is described in Liptser and Shiryayev (1977) and Elliott, Aggoun, and
Moore (1995). It has been used in asset-pricing models by David (1997),
David and Veronesi (1999), and Veronesi (1999, 2000).

The expected value of the drift of y, st · �̂, given the current informa-
tion is �̂t = �̂ · p̂t . The n-dimensional vector p̂t contains the probabilities of
being in each of the states, given the information set at time t "�t ( t ≥ 0#.
These conditional probabilities evolve according to the stochastic differential
equation:

dp̂t = A′p̂t dt+�p̂�p̂t� dB̂t
(5)

�p̂�p̂� =
1
�y
P̂ �I −1np̂′��̂�

where P̂ is a matrix with the elements of p̂ on the diagonal. The normalized
innovation process dB̂t containing the new information used to generate �t is

dB̂t =
1
�y
�dyt− �̂ · st dt�= dBt+

�̂ · �st− p̂t�

�y
dt� (6)

The evolution of the technology shock under the innovation process B̂ is

dyt = �̂ · p̂t dt+�y dB̂t (7)

and the evolution of k is

dkt = �̂�ct� kt� p̂t� dt+�k�k�dB̂t� (8)

where

�̂�c� k� p̂�= k�− c−
[
�̂ · p̂+�− ��y�

2

2

]
k�

2.2 The two-state case
We consider in particular the case in which the state st can assume two val-
ues, corresponding to a positive growth rate �̂1 in expansions and a negative
growth rate �̂2 in recessions. The technology shock process is shown in the
top panel of Figure 1, and the bottom panel plots the estimated probabilities
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Figure 1
The top panel displays the logarithm of the technology level (the cumulation of the Solow residual) and the
bottom panel displays the probability of being in the low-growth state.
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Table 1
HMM model parameters

Parameter Description Quarterly value

�̂1 High growth 0�0114
�̂2 Low growth −0�0290
�y Technology shock standard deviation 0�0192
1/a12 Mean duration of the high-growth state 13�58
1/a21 Mean duration of the low-growth state 2�84

The parameter values were obtained by estimating the HMM using time-series data on the Solow residual.

of being in the low-growth state computed using our baseline estimates.
Under our approximating model, the post–World War II experience was one
characterized by sharp recessions and extended expansions. Although we use
this specification as a model of the technology process, it mirrors that used
by Hamilton (1989) in his study of output growth.

In constructing Figure 1, we used data on the cumulative Solow resid-
ual y from Citibase, following the construction of Stock and Watson (1999).
These residuals are scaled so that they can be interpreted as labor-augmenting
technology. These data are quarterly from 1959:Q1 to 1999:Q2 and are con-
structed from output [gross domestic product (GDP) less farm, housing, and
government], capital (interpolation of annual values of fixed nonresidential
capital stock using quarterly investment), and labor (hours of employees on
nonagricultural payrolls). As in Stock and Watson, we then construct the
technology shock process using a labor’s share value of 0.65.

To construct probabilities for a two-growth state model, we estimated the
HMM using an EM algorithm to compute maximum-likelihood estimates
applied to discrete time data, as described by Hamilton (1990). We used the
estimated transition probabilities over quarterly intervals to set the intensity
matrix A as in Equation (4). Since there are only two states, 1/a12 is the
average length of expansions and 1/a21 is that of recessions. The intensities
and growth rates are reported in Table 1. The time series of probabilities of
Figure 1 were computed using both a discrete-time filter and a continuous-
time approximation to the filter applied to discrete-time data. Cagetti et al.
(2000) give comparisons between the two methods and show that the dis-
cretization bias is small. As the table shows, under the approximating model
the recessions are short lived and the expansions are persistent.10

3. Model Distortions and Approximation Measures

In Sections 1 and 2 we described the technological process and derived
the filtering equations for the approximating model, ignoring robustness. In

10 While the parameters of the HHM model can assume values that accommodate the longer-term productivity
slowdowns that are often used to describe the 1970s and early 1980s, the maximum-likelihood estimates
instead feature a recession-expansion classification, as is consistent with the related empirical literature in
macroeconomics.
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this section we study how a concern for robustness affects the approximat-
ing model. We present two different ways to incorporate robustness, called
game I and game II. While the main intuition behind these two representa-
tions is similar, each of them analyzes different ways in which the approx-
imating model can be perturbed. Then, in Section 3.5, as a benchmark we
also describe the full information robustness case, where the growth state s
is perfectly observed (and thus there is no filtering problem), but the decision
maker still entertains the possibility that the approximating model describing
the technological process is misspecified.

3.1 An overview
Here we give a brief overview of how to enforce robust decision making. As
explained in the introduction, the decision maker is uncertain about the exact
behavior of the state variables of the model. He starts from an approximat-
ing model. One possible interpretation for the approximating model is that
it represents the estimates from the time series of observable variables (y in
our case) obtained using some relatively simple model (such as the linear
evolution equation for y with a two-state jump in the drift). However, the
decision maker recognizes that the assumed model is just an approximation,
and that the true behavior of y may have more complicated dynamics both
in terms of the functional form and the length of the history of observations
entering it. He thus considers many other possible models in addition to the
approximating one. One way to represent all these other models is to add per-
turbations to the approximating model and to allow the perturbations to feed
back on the history of the state, thereby modifying the evolution equation
of the state variables. Sections 3.3–3.5 describe in detail how to add these
perturbations. As mentioned before, the type of admissible perturbations is
different between game I and game II.

How does the decision maker treat all these possible models? As a vehicle
to explore the directions in which a candidate decision rule is most fragile,
the decision maker considers the model that delivers the worst utility. We are
not saying that he believes that the true model is the worst one, but that by
planning a best response against it, he can devise a rule that is robust under
a set of models surrounding his approximating model.

We formalize this conservative decision-making process by introducing a
second fictitious player. This player has the ability to choose the distortion
to the approximating model and plays against the original decision maker.
This player thus chooses the model distortion in order to minimize the utility
of the first player. The objective for this optimization problem contains a
penalty function used to limit the potency of the minimization. We will have
more to say about this in Section 6. The original player then chooses his con-
sumption and investment in order to maximize his utility, given the distortion
introduced by the fictitious player. The robust decision problem becomes a
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max-min problem, where min refers to the fictitious player trying to mini-
mize utility, and max refers to the decision maker in the economy, trying to
maximize his utility. The exact problem is described in Sections 3.3–3.5.

So far we have not talked about the set of all possible models, that is, the
set of possible distortions that can be chosen by the fictitious player. It is of
course necessary to restrict such a set. We thus consider only models that are
close to the approximating one, and ones that would be difficult to distinguish
statistically given the observed time series of past data. We do not want to
consider models that are wildly different from the approximating one and that
would be easily rejected. The aim of our exercise is to show that even con-
sidering very small distortions, that is, distortions very difficult to detect sta-
tistically, robustness generates quantitatively relevant effects on prices; even
assuming that the approximating model is a very good approximation, small
deviations can generate quantitatively relevant effects. To restrict the set of
possible models, we penalize the fictitious player for choosing models that
are very different from the approximating one. As a measure of the distance
between two models, we use conditional relative entropy, a discrepancy mea-
sure built from log-likelihood ratios between models. Thus when solving the
minimum problem of the fictitious player, we add a penalty term to make
sure that this player chooses models that generate low relative entropy, that
is, are very close to the approximating one. Sections 3.3–3.5 describe the
formula for relative entropy, while Section 6 describes how to interpret it
and which values were chosen in our simulations.

Since the evolution of technology shocks are not under the influence of
investors, there is a strong form of separation in the optimal resource alloca-
tion problem in the absence of model misspecification. As we have seen, we
can solve the state prediction problem prior to and separate from the invest-
ment problem. Both of the two hidden Markov games we explore preserve
features of this separation, but in different ways.

Like the resource allocation problem without misspecification, the first
game constructs a Markov-state evolution equation for the hidden-state prob-
ability vector. Armed with this and other evolution equations, we solve a full
information robustness game with an appropriately constructed state variable.
The first game thus treats p̂ as any other state variable. Thus the HMM prob-
lem is used merely to produce a more complicated evolution equation for the
technology shock and treats p̂ as a directly observable state variable.

The second game considers a more primitive starting point and views p̂
differently than other observable state variables. The decision makers explore
misspecification of the evolution of the unobserved state s and its relation
to technology growth. We continue to partially separate the prediction prob-
lem (the construction of hidden-state probabilities using past data) from the
control problem (the selection of investment and consumption profiles). We
achieve this separation by considering a recursive, Markovian game that
allows the date t decision makers to reconsider their use of past data when
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making inferences about probabilities of the hidden growth states. We intro-
duce new decision makers at each date as a device to avoid having the
growth-state predictions depend on past contributions to utility. These new
players in effect remove commitments to backward-looking filtering rules.
Probability assessments are made to be more conservative based on the objec-
tive of the decision makers from date t forward.11

3.2 Perturbations and relative entropy
As previously explained, we need to introduce distortions to the approximat-
ing model, and we need to measure the distance between the approximating
model and the distorted one. Let us consider first a diffusion process (without
jumps in the drift) generated by a Brownian motion Bt . A very general way
to introduce perturbations is to change Bt into Bt+

∫ t

0 hs ds, where hs is some
process adapted to the filtration generated by B. The process h does not have
any specific parametric form, but it is disguised by the Brownian motion.
By adding h, we are describing a large class of models without making any
parametric assumption about the uncertainty structure. Since the h process is
masked by a Brownian motion, it can be hard to detect given historical data.

To measure the discrepancy between the approximating (h = 0) and the
distorted model, we use conditional relative entropy. Relative entropy is typ-
ically defined as the expected value of the log-likelihood ratio, that is, of the
expected value of the log of the Radon–Nikodym derivative of the perturbed
model with respect of the approximating one, where the expected value is
computed using the density generated by the perturbed model. The relative
entropy equals zero when the two models coincide (the Radon–Nykodim
derivative is 1), and is positive when they do not. Anderson, Hansen, and
Sargent (2000) and Hansen et al. (2001) give the exact formulas for the
relative entropy, and we will say more about how to interpret the entropy
measure in Section 6. The time derivative of the relative entropy, that is, the
contribution of the current htdt to the relative entropy, turns out to be simply
1
2 �h�2 (so that the larger �h�, the larger the distance between two models).

The HMM structure can change the interesting class of perturbations and
the associated relative entropy measure, as we will see in Section 3.4. We
consider two HMM robustness games that differ in the type of perturbations
that are entertained. Conveniently, both can be formulated as solutions to
Hamilton–Jacobi–Bellman equations, as we will describe in Section 4.

3.3 Hidden information: representation I
We follow Anderson, Hansen, and Sargent (2000) in formulating our first
robust resource allocation problem. The state vector for the hidden Markov

11 This approach differs from others in the robust control theory, such as Basar and Bernhard (1995). They
consider time 0 commitment games, in which both agents may commit to a certain set of decision rules.
Therefore, in their framework, the backwards-looking filtering of data to estimate the current vector of growth-
state probabilities depends on past contributions to utility.

375



The Review of Financial Studies / v 15 n 2 2002

game is �k� p̂� y�, which evolves according to Equations (5) and (8). The
stochastic evolution of these state vectors is governed by a single Brownian
motion technology shock, dB̂t . We disguise model misspecification within
the Brownian motion shock. Thus, as explained in the previous section, we
replace dB̂t with dB̂t +htdt, where the process ht is a process adapted to
the filtration �t , and we alter Equations (5) and (8) to be

dkt = +�̂k�ct� kt� p̂t�+�k�k�ht, dt+�k�k�dB̂t

dp̂t = +A′p̂t+ �̂p̂�p̂�ht, dt+ �̂p̂�p̂t� dB̂t (9)

dyt = +�̂ · p̂t+�yht, dt+�y dB̂t�

There are two control variables in the decision problem. The maximizing
player selects c and the minimizing player chooses h. As noted by Fellner
(1965), such probability slanting should not be interpreted as the beliefs of the
decision maker defined independently of the context of the decision problem.
The drift, hdt, appended to the Brownian motion contributes �ht�

2

2 to the
systematic part of the instantaneous log-likelihood ratio.

Anderson, Hansen, and Sargent (2000) motivated their analysis by treating
the composite state vector as observable. Here the component p̂t is observ-
able, but it conveys no new information beyond current and past values of the
technology process. Instead p̂t is a variable constructed to make the decision
problem Markovian. Because it is constructed by the agent as a function of
the history of the observations, it seems to have a different status than the
technology process yt , which is constructed by nature. Our next representa-
tion of the hidden state recognizes this difference and thereby prepares the
way for a richer class of model perturbations when we eventually compose
our zero-sum two-player game to promote robust decisions.

3.4 Hidden information: representation II
We now consider a second representation of the hidden information that was
developed in Cagetti et al. (2000) and is the nonlinear counterpart to one
explored by Hansen, Sargent, and Wang (2002). Instead of hiding perturba-
tions in the reduced information Brownian motion dB̂t , we consider pertur-
bations in the original Brownian motion dBt , in the growth rate vector �̂
and in the evolution of the state st . We now suppose that there is a vector gt
with the same dimension as the number of states. That is, we assume that the
malicious player can observe the underlying stochastic processes (that are not
observed by the decision maker) and perturb them. This vector adds a drift
to the full information Brownian motion, and the increment dBt is replaced
by gt · stdt+dBt . This same vector, gt , also alters the forward evolution of
p̂t . The drift Ap̂t of the probability updating equation is modified to be

A′p̂t dt+ �gt� p̂t� dt�
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where

 �g� p̂�=



p̂1+ 1

2 �g
1�2 − ent�g� p̂�,

·
·
·

p̂n+ 1
2 �g

n�2 − ent�g� p̂�,




and

ent�g� p̂�= 1
2

∑
i

�gi�2p̂i�

Superscripts on p̂ and g are used to denote entries of the respective vectors
and subscripts are used to denote time. Note that the drift perturbation  
satisfies 1n · �g� p̂� = 0. Thus the local mean of 1n · p̂t is zero, as it should
be since probabilities must add up to one. Whenever gi is large relative to
the other components of g, the resulting drift in dp̂i

p̂i
is increased through the

term 1
2 �g

i�2 − ent�g� p̂�
Altering the underlying growth states by replacing �̂ with �̂+g changes the

accuracy of the probability estimates. Highly dispersed growth states should
be easier to detect. This shows up in our analysis by replacing �̂p̂�p̂� with

�p�g� p̂�=
1
�y
P̂ �I −1np̂′���̂+g�

in the stochastic contribution to the probability evolution. Thus, in solving
these games, we use the forward evolution

dkt = +�̂k�ct� kt� p̂t�+�k�k�gt · p̂t, dt+�k�k�dB̂t

dpt = +A′p̂t+ �gt� p̂t�+�p�g� p̂�gt · p̂t, dt+�p�g� p̂�dB̂t (10)

dyt = ��̂+�ygt� · p̂t dt+�y dB̂t�

where the probability vector pt is initialized at pt = p̂t .
To formalize robustness, we require measures of model misspecification.

If s were fully observed, appending a drift to Brownian motion implies a
predicted likelihood increment of �gi�

2

2 . Since this measure conditions on the
unknown state, we average it using the p̂ probabilities to obtain the overall
measure ent�g� p̂�. Averaging the full information likelihood in this way imi-
tates the EM construction of maximum-likelihood estimates of HMMs, as in
Dembo and Zeitouni (1986).

In summary, a change in the vector g does two things. It alters the vector
�̂ of potential growth rates, and it simultaneously changes the probability
evolution. This dual role for g emerges as the solution to a specification error
minimization problem in which a richer class of perturbations is entertained.
In particular, A, �̂, and p̂ can be altered in distinct ways. The restrictions
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Table 2
Distortions for two representations with hidden information

Game dB distortion dB̂ distortion A′p̂ distortion �̂ distortion

Hidden I dB̂+hdt �̂+�yh1n
Hidden II dB+g · s dt dB̂+g · p̂ dt A′p̂+ �g� p̂� �̂+�yg

imposed on the relation between distortions can be defended from a more
primitive starting point. [See Cagetti et al. (2000) for a formal treatment.]

Table 2 summarizes the differences between the two representations of
information under a potential distortion. Notice that the perturbations in rep-
resentation I make no explicit reference to the evolution of the hidden state s.
A drift distortion hdt (independent of s) is appended to the Brownian motion
increment for the Brownian motion associated with investors’ information. In
contrast, the counterpart to h, denoted by g, in representation II can depend
on states and hence can capture changes in the hidden growth rates.

We will subsequently define two HMM games associated with the two
representations of information. These games are designed to deliver forms of
robustness by having a fictitious agent choose perturbations in a malevolent
way. Thus the decision variable for this fictitious agent is h for HMM game I
and g for HMM game II. We limit the malevolence by adding quadratic
penalties to the objectives of decision makers scaled by .. We use the sta-
tistical discrepancy measures described earlier as penalties. These penalties
are h2

2 for game I and
∑

i
�gi�

2

2 for game II. The resulting two-player games,
described later in Equation (12), will be Markov, which gives computation-
ally tractable alternatives to the Markov decision problem without robustness.

3.5 A full information benchmark
For comparisons we will also consider a model in which st is directly
observed. Like hidden information game I, this game is formulated as in
Anderson, Hansen, and Sargent (2000), except with a different vector of
state variables. The actual state s replaces vector p̂ of state probabilities. We
use p̂ to form a time series for s by assigning s to the low-growth state when
p̂ is greater than one-half and to the high-growth state when p̂ is less than
one-half.

4. Value Functions

We have described representations of information for an HMM model and
another full information benchmark. We now use these representations of
information to solve resource allocation problems that incorporate a con-
cern about robustness. These model specification games are all Markov and
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have a single value function. In this section we report the partial differen-
tial equations for these functions, which are known as Hamilton–Jacobi–
Bellman (HJB) equations. To study these games we will solve these differ-
ential equations numerically as described in Appendix C.

4.1 Preferences and discounting
It is convenient to scale consumption and capital by the technology level.
This will eventually allow us to derive HJB equations that do not depend on
y, but only on �k� p̂�, thus simplifying our numerical analysis. This scaling,
however, has the effect of introducing stochastic discounting into the prefer-
ences. We will use this same discounting to evaluate model misspecification.

Let U�C� be the instantaneous flow of utility, which we parameterize using
a constant elasticity of substitution. The time t contribution to the discounted
power utility function is

exp�−/t�U�Ct� = exp�−/t��Ct�
1−0/�1−0�

= exp+�1−0�yt−/t, �ct�
1−0/�1−0�

= Y ∗
t

�ct�
1−0

1−0
�

where / is the subjective rate of discount and

Y ∗
t ≡ exp+�1−0�yt−/t,�

We now view Y ∗
t as a stochastic discount factor and c = C

Y
as a decision

variable. Notice that

dY ∗
t = Y ∗

t

(
�1−0�dyt+

[
�1−0�2��y�

2

2
−/

]
dt

)
� (11)

In the robustness games, Y ∗
t is used to discount instantaneous utilities and

discrepancy measures.

4.2 Hamilton–Jacobi–Bellman equations
Let x be a composite-state vector that includes �k� p̂� Y ∗�. The stochastic
evolution [Equations (9) and (11)] for game I can be written as

dxt = �1
x�ct� ht� xt�dt+�1

x �xt�dB̂t�

where ht is a scalar perturbation and �1
x is a column vector. This column

vector depends on x, but not on h. As explained in Appendix B, the HJB
equation for game I is

0 = max
c

min
h
Y ∗

[
c1−0

1−0
+.

h2

2

]
+�1

x�c�h� x�
′ ·2W 1�x�

+ 1
2
+�1

x �x�,
′ 4

2W 1�x�

4x4x′
+�1

x �x�,� (12)
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where 2 is the gradient. The HJB equation is composed of two parts, one
representing the contribution of the current reward to the value function, the
other representing the expected change in the value function W 1. The first
part is

Y ∗
[
c1−0

1−0
+.

h2

2

]
�

which contains the current utility of the decision maker, plus, as explained
in previous section, a penalty for the malicious player. As discussed, the
penalty is given by the entropy measure of the discrepancy between the
approximating and perturbed models. Note that the entropy term h2

2 is mul-
tiplied by a (positive) parameter . that controls the degree of robustness that
is sought. When . is , the penalty is also , and therefore no perturbations
are allowed. Therefore . =+ gives the usual resource allocation problem
without robustness. Smaller . result in smaller penalties and hence accom-
modate a larger exploration of alternative models. The calibration of . in our
simulation is described in Section 6.

For game II we replace Equation (9) with Equation (10). We write the
stochastic evolution as

dxt = �2
x�ct� gt� xt�dt+�2

x �gt� xt�dB̂t�

where gt is an n-dimensional perturbation and �2
x �gt� xt� is a column vector.

In contrast to game I, this volatility vector depends on the perturbation g. The
HJB equation is of the same form as game I, but with a different stochastic
evolution:

0 = max
c

min
g
Y ∗

[
c1−0

1−0
+ .

2

∑
i

�gi�2p̂i
]
+�2

x�c� g� x� ·2W 2�x�

+ 1
2
+�2

x �g� x�,
′ 4

2W 2�x�

4x4x′
+�2

x �g� x�,� (13)

Under game II, the local mean of the value function W 2 is the negative of

Y ∗
[
c1−0

1−0
+ .

2

∑
i

�gi�2p̂i
]

appropriately optimized. We again nest a decision problem without concern
for robustness by setting the tuning parameter . to infinity.

4.3 Computations
We compute the value functions for these games numerically. Given the pre-
sumed structure of shocks, we thought it best to avoid using the linearization
techniques commonly employed in macroeconomics. Conveniently the value
functions are linear in the stochastic discount factor. That is, they satisfy
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W�k� p̂� Y ∗� = Y ∗V �k� p̂�, and as a consequence we can focus our compu-
tations on determining V . This scaling property follows because differential
equations [Equations (12) and (13)] are both linear in Y ∗.

For both games, consumption satisfies

c∗ =
[
4V

4k
�k� p̂�

]− 1
0

� (14)

Moreover, Equation (12) is quadratic in the scalar h and Equation (13) is
quadratic in the vector g. Thus for given value functions, the control laws
for c, g, and h are easy to compute. The solution algorithm in Appendix C
exploits this simplicity.

We solve the complete information game in an entirely analogous fashion,
except in this case we eliminate the dependence on p̂ and carry along a
vector of value functions (one for each growth state) that only depend on k.

5. An Illustrative Growth Economy

As we have seen, the HMM version of the stochastic growth model sepa-
rates as follows. We can first solve a signal extraction problem and deduce
the hidden state probabilities. We can then use these hidden state probabili-
ties in conjunction with the directly observed technology shock process as a
multivariate stochastic forcing process for a robust resource allocation prob-
lem. In this section we take the time paths for the technology process and
the hidden state probabilities as inputs into our calculations. These are the
exogenous forcing processes for our models. The robust resource allocation
problems imply trajectories for capital, consumption, and investment. We
now study these quantity implications to understand better the precautionary
motive induced by robustness.

5.1 Implications for capital accumulation
To illustrate the impact of robustness, we compute the implied time series for
k and compare them to actual data. To make this comparison we must fully
parameterize preferences. Initially we set the power utility parameter 0 = 2,
subjective discount rate /= �04, and depreciation rate �= �07. We initialize
the initial capital technology ratio to the corresponding level in the data in
1959:Q1 and then compute the solution for the various decision problems by
using the trajectories of y and p̂ shown in Figure 1.

Figure 2 shows the evolution of our endogenous state variable k, which
can be interpreted as the capital-effective labor ratio. The figure reports the
evolution of k for the data and for the hidden information decision problem
without robustness (.=). The time path for k implied by the .= model
mimics the actual data, although the model generates a higher trajectory early
on and a lower one later. The overall similarity to the data should come as
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Figure 2
This figure displays the observed time series of the capital-technology ratio k and the ratio implied by an
HMM benchmark model with . = (i.e., no preference for robustness).

no surprise since the parameter configurations were selected in part to match
the growth features of the model.12

The effect of robustness on the evolution of k is depicted in Figure 3.
The figure shows that the robustness games imply a higher level of capital
than the corresponding nonrobust decision problems. After starting with the
same initial capital, a decision maker endowed with a concern about model
misspecification builds up the capital stock more quickly. Robustness acts as
an additional precautionary motive for saving and generates a higher buffer
stock of capital.

In the standard expected utility framework, precautionary savings are gen-
erated by the possibility of bad shocks coming from a given and prespecified
probability distribution. These effects are known to be small when calibrated
to macroeconomic measures of uncertainty.13 In our robust setup, the deci-
sion maker also considers the potential misspecification of his approximating

12 Moreover, the technology process was itself extracted from aggregate quantity data.
13 See Aiyagari (1994) and Krusell and Smith (1998) among others for a discussion of this issue. Small precau-

tionary savings are needed to justify the long-standing tradition of macroeconomic calibrations to steady-state
relations.
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Figure 3
This figure displays the capital technology trajectories implied by different values of the subjective discount
rate (/) and the robustness parameter (.). Introducing robustness results in additional capital accumulation
holding fixed the discount rate. This is seen by comparing the �.�/�= ��0�04� trajectory to the �. = 4� /=
0�04� trajectory. This increase in savings can be offset by simultaneously increasing the subjective rate of
discount. This is seen by comparing the �. = 4� /= 0�04� trajectory to the �. = 4� /= 0�058� trajectory.

model. This induces an additional precautionary mechanism that may not be
quantitatively small. The robust social planner will save more to build up a
higher capital level. He fears that the future growth rates will be lower than
those implied by the approximating model, and as a consequence will keep
a larger buffer stock of capital. Figure 3 shows that this additional precau-
tionary motive can be very important quantitatively.

Macroeconomic calibrations of parameters based on mean growth rates
and average returns typically ignore the impact of precautionary savings.14

When robustness is introduced, these calibrations must be modified. Decreas-
ing the robustness parameter . increases this robust precautionary motive
and increases the average level of capital. A similar effect can, however, be

14 Even when the macroeconomic model justifies a quantitatively small amount of precautionary savings, macroe-
conomic calibrators face the dilemma of which average return to use in pinning down parameters. As empha-
sized by Cochrane and Hansen (1992), the same macroeconomic model that is used to explain the evolution of
capital is poorly suited for accounting for the observed risk premia. This is just a restatement of the so-called
equity premium puzzle.
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obtained by decreasing the discount rate / instead. A more patient decision
maker will also want to hold more capital. Hansen, Sargent, and Tallarini
(1999) and Hansen, Sargent, and Wang (2002) show that for a discrete-time
linear quadratic permanent income model, the extra precautionary effect due
to robustness can be fully offset by increasing the subjective discount rate.
In our setup, with power utility and nonlinear state evolutions, this is not
exactly true. However, Figure 3 shows that this result does hold as a remark-
ably good approximation. The figure plots the implied capital stock time
series for alternative values of . and /, and we see that by simultaneously
lowering . and increasing / we can preserve the quantity implications of the
nonrobust (.=) model. Therefore the same quantity data can be generated
by various configurations of . and /, and in our pricing calculations below
we will look at those configurations that leave the quantity data unchanged,
as in Hansen, Sargent, and Tallarini (1999).

5.2 Other quantity implications
The approximating model fails to capture some aspects of the data. In addi-
tion to abstracting from labor supply, the model is known to imply too much
consumption volatility. The ratio of the standard deviation in consumption
growth to that in output is approximately one in our model, but only one-half
in the data. The excess consumption volatility implied by the model suggests
that the risk premia are likely to be larger than in a model with more plau-
sible consumption variability. However, as we will see in Section 7, they
are still substantially lower than in the data, and this increased consumption
variability cannot, per se, explain the observed risk premia. The aim of our
exercises is to take a simple, widely used, and pedagogically valuable model
and study how a concern about robustness alters what is typically viewed as
risk premia by a financial econometrician. Adding various elements to the
approximating model (such as a richer dynamic for the technological pro-
cess, various types of adjustment costs and intertemporal complementarities
in preferences) may generate more realistic consumption variabilities, but
will also make the model more difficult to solve and arguably distract us
from our primary interest. We have chosen to use a simpler model to empha-
size how a concern about model misspecification can alter security market
prices.

6. Tuning Robustness

The parameter . is used to govern the extent of robustness in HMM games I
and II, and in the full information counterpart. It is difficult to restrict the
parameter . a priori independent of the approximating model and of the rules
of the game. In this section we describe a different approach that follows
an idea in (Anderson, Hansen, and Sargent 2000). We explore families of
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robustness games indexed by .. We do not presume that . for one game
has the same meaning as for another, and the .s used in our calculations
will differ across games. Associated with each . (and each game) is an
implied alternative worst-case model used to enforce robustness in decision
making. This alternative model is obtained as part of the solution to a two-
player game. Moreover, there is a corresponding conditional relative entropy
process that measures the discrepancy between the approximating model and
the alternative worst-case model. A smaller value of . reduces the penalty for
exploring model misspecification. Typically this results in a larger entropy
process associated with the worst-case model.

Comparing the entropy processes across games is more informative than
comparing directly the values of .. As we have noted previously, the dis-
crepancy measures we use are information-based measures related closely to
log-likelihood ratios. A larger entropy process implies that it is easier for a
statistician to discriminate between the approximating model and the worst-
case model given historical data. While rational expectations presume there
is no discrepancy (. = ), we wish to allow for the possibility of model
misspecification that is small in a statistical sense. We operationalize this to
be small by choosing . to limit the entropy process that comes from the
Markov game solution.

Given a time series of y, we could compute the log-likelihood ratio to
test one model (the approximating model h = 0) versus the alternative mis-
specified one (h = h∗). As explained in Section 3.2, the entropy term �h∗�2

2
represents the conditional expectation of the instantaneous contribution to
the log-likelihood ratio. Cumulating the process " �h

∗
t �

2

2 # over an interval gives
the predictable component to the log-likelihood over that same interval.15

To simplify comparisons across games, we will hold fixed the cumulation
over the observed sample. In our computations, we set this to �6, which is
arbitrary but gives us a useful benchmark for making comparisons across
games.

For HMM game II, matters are more complicated because of the hidden
Markov state. Our measure of discrepancy is based on an averaging condi-
tional entropy over the hidden states: 1

2

∑
i�gi�

2p̂i. An analogous approach is
used in likelihood estimation based on the EM algorithm. This algorithm is
commonly used because of its computational convenience and its relation to
likelihood ratios. Thus the discrepancy measure is distinct, but closely related
to a conditional expectation of a log-likelihood ratio.

Anderson, Hansen, and Sargent (2000) and Hansen, Sargent, and Wang
(2002) provide more sophisticated discussions linking statistical detection

15 This reference to a predictable component is ambiguous without stating which model is used. It turns out that
under either the approximating model or the worst-case model, this same expression is valid. Expectations of
functions of this cumulation differ depending upon which model was used in the computation. The symmetry
in the instantaneous contributions does not hold in a full information game with observable jump components.
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to the choice of .. Consider the following simplified problem of statisti-
cal discrimination. Use historical data to make a pairwise choice between
an approximating model and a worst-case model. This can be formulated
as a Bayesian decision problem. Two types of errors are possible depend-
ing upon which model is correct. The resulting detection error probabilities
provide a formal way to quantify statistical discrimination as originally sug-
gested by Chernoff (1952). Like Chernoff, Anderson, Hansen, and Sargent
(2000) use bounds on detection error probabilities between competing mod-
els to help understand better any particular value of .. For instance, a large
value of . is one for which the worst-case model is hard to detect statis-
tically given the approximating model. Similar to the rational expectations
intuition, the misspecified models a decision maker aims to be protected
against are those that could not have been ascertained easily given historical
data.

At least in the case of diffusions, conditional entropy is an important input
into these bounds on detection error probabilities. Instead of using bounds,
Hansen, Sargent, and Wang (2002) compute detection error probabilities via
simulation and allow for hidden Markov states. Computations such as these
are more refined ways to use the Bayesian theory of statistical discrimina-
tion to assist in the choice of .. Here we use a less ambitious approach of
fixing the sample accumulation of the relative entropy process. When rela-
tive entropy is constant, however, we may compute easily a Chernoff-type
bound on the detection error probabilities in terms of the entropy accumu-
lation. For an entropy accumulation of �6, the upper bound on the detection
error probability is �43.16 Thus if forced to decide between the approximat-
ing model and the worst-case model, a statistician should expect mistakes
to occur. Unfortunately, as we will see, that assumption of constant relative
entropy process is counterfactual for our models. Thus our use of �6 for the
entropy accumulation is only a rough way to get comparability across games
and is not meant as a way to give a definitive choice of the parameter .. In
fact, we suspect that even considerably smaller values of . might be reason-
able for our model economies. Moreover, there are other potential approaches
for tuning the robustness parameter .. While detection error analysis elimi-
nates candidate models that should be easy to uncover from historical data,
it considers only a very highly stylized model selection problem. The util-
ity consequences of being robust and the costs of active learning arguably
should also come into play.17

16 The probability of making a classification error is bounded above by 1
2 exp�− 1

4 ce�, where ce is the accumu-
lation of the conditional entropy.

17 We envision that investors confront a much more complicated problem in statistical discrimination, one
that would entertain a wide array of models and would use the decision problem to weight the errors in
misclassifying models. Implicitly we are presuming that when confronted with such a problem, the investors
decide that model discrimination is too difficult and focus instead on making their investment decisions robust.
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Table 3
Parameter settings for � and �

Game . /

Hidden I 4.0 .058
Hidden II 6.5 .046
Full information 4.4 .055
HMM benchmark  .040

This table reports the values of the robustness parameter . and the subjective discount rate
/ that are used in our subsequent calculations. These configurations leave the time path for
the capital-technology ratio virtually the same as that for the . =  economy with hidden
information. The sample sum of the conditional entropies are .60 for HMM game I, .60 for
HMM game II, and a slightly larger .61 for the full information benchmark.

Based on detection error considerations, we employed the . and / pairs
reported in Table 3 in our subsequent calculations. These choices make the
cumulation of relative entropy remain about the same across games. We
report the time series of entropy measures for both HMM games in Figure 4.
There is considerable variability in these measures, with more variability in
the entropy measures for HMM game II than for game I. The entropies for
both HMM games are particularly large when the investors are unsure which
growth state they are in as measured by p̂.

Figure 4
The top panel gives the time series for the conditional relative entropies for the two HMM games. For HMM

game I we report �h∗�2
2 and for HMM Game II we report

∑
i �g

∗
i �

2 p̂i
2 .
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7. Local Risk and Uncertainty Prices

One common way of studying the dynamic implications of a model is to
report the implied impulse response functions. Since our model is explicitly
nonlinear, impulse response functions based on linear approximations seem
ill suited to characterize the implications of these models. Instead we report
plots of prices as functions of the state variables in the model and the time
series implied by the historically observed technology levels.

The HMM formulations imply a particular Markov evolution for the tech-
nology shock process where the Markov chain state probabilities become an
additional state variable. As we showed in Figure 1, a time series of these
state probabilities can be constructed from the observed data on the technol-
ogy level. For both HMM games we solve numerically for the law of motion
for the capital stock. Using this solution and a given time series for the state
probabilities, we recursively generate a time series for the implied capital
stock. Thus from a given time-series trajectory for the technology shock pro-
cess, we can compute time series for the state probabilities and the capital
stock implied by the model. These time series will be used in some of the
calculations that follow.

As we noted above, the effect of robustness on the capital evolution can
be offset by increasing the rate of discount. In the calculations in this section
we experiment with different levels of the robustness parameter ., varying /
to maintain the quantity implications. Given that the capital stock trajectory
remains essentially the same across games, the instantaneous risk-free rate
measured by the marginal product of capital also remains the same. The
shadow prices of the Brownian motion increments, however, will differ.

We study the (local) pricing of dB̂ for our two decision models in the pres-
ence of hidden information. Consider the local relation between the instanta-
neous return on a security �r , its factor loading on the Brownian increment
�r , and the risk-free rate �f :

�r −�f = �r7�

Then 7 is the factor risk price and �7� is the absolute slope of the mean
standard deviation frontier. In our model so far, there is a single Brownian
motion factor dB̂. Anderson, Hansen, and Sargent (2000) and Chen and
Epstein (2001) show that the factor price of the Brownian increments dB̂
can be decomposed into two prices: the usual price for risk and a price of
model uncertainty.18 Thus the factor price 7 is the sum

7= 7m+7u�

18 Anderson, Hansen, and Sargent (2000) and Chen and Epstein (2001) differ in the way the beliefs that dictate
prices are deduced. The local prices for game I can be viewed as a special case of those in Anderson, Hansen,
and Sargent (2000). As we have seen, however, the beliefs that support the local game II solution exploit more
details of the HMM structure. Thus the game II solution and prices are not special cases of those reported in
Anderson, Hansen, and Sargent (2000).
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The price of risk 7m is obtained by applying a formula from Breeden’s (1979)
analysis of a consumption-based asset pricing model. This risk price is given
by (minus) the weighting coefficient on B̂t in the evolution for the process
of the log marginal utility of consumption:

:�k� p̂� y� = log�C−0�

= −0 log c−0y

= logVk�k� p̂�−0y�

where we have used Equation (14) for the consumption-technology ratio, c.
The coefficient on dB̂ is computed as the sum of partial derivatives with
respect to y, p̂, and k:

7m = 0�y+�yk
Vkk
Vk

− �1− p̂�p̂
�1 −�2

�y

Vkp̂

Vk
�

In addition to the usual component 7m that depends on the marginal util-
ity of consumption, there is a second component, related to the worst-case
model, that emerges in the solution to the two-player game. It is the worst-
case model that is used in place of the approximating one for computing
shadow prices. Under this worst-case model, S, the price of the asset, evolves
according to

dS

S
= �r dt+�r�dB̂+h∗ dt�

in game I (and with p̂ · g∗ instead of h∗ in game II). That is, it is as if the
drift of the process were ��r+�rh∗�dt instead of �r dt. This augmented drift
can be used in Breeden (1979), which introduces an additional component
to pricing vis-à-vis the approximating model. Making this drift adjustment,
we get 7u =−h∗ for game I and 7u =−p̂ ·g∗ for game II. (Note that h∗ and
p̂ ·g∗ will affect the expression for the risk-free rate �f , since �f is derived
from the drift of the marginal utility of consumption.) Anderson, Hansen,
and Sargent (2000) formalize these arguments and provide a more complete
derivation of the factor price decomposition.

Figure 5 gives the price functions for model uncertainty and for risk. It
shows how these prices vary with the probability of being in the low state
holding the capital-technology ratio at its median level. These price functions
are highly nonlinear, with peak effects occurring near probability one-half.
Peak effects are associated with having little information about which growth-
state regime is in place. As mentioned above, the reported risk prices are
overstated, because consumption volatility in our models is about double
that in the data. Nevertheless, the uncertainty prices dominate those of the
risk prices and display more sensitivity to the probabilities.
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Figure 5
This figure shows the prices of risk and uncertainty as functions of the probability of being in the low-growth
state. These functions are computed holding k fixed at the sample median.

Figure 6 shows the prices of model uncertainty as functions of k (the
capital-technology ratio) for the two hidden information games and for two
values of the probability of being in the low-growth state. The dependence
of this price on k is mostly linear and relatively flat in comparison to the
dependence on the probability. As a consequence, the implied time series for
the uncertainty prices are dominated by movements in the state probabilities.
The implied time-series trajectories are reported in Figure 7. These uncer-
tainty prices display cyclical fluctuations, with the peak effects occurring at
the beginning and end of recessions. These effects are associated with points
in time in which the state probabilities are each about one-half. The prices
are lower in game I than game II for probabilities near one-half, but higher
for probabilities close to zero or one (see also Figure 5). Thus the model
produces substantial cyclical fluctuations in what financial econometricians
might mistakenly call risk premia. The high market prices of uncertainty
occur not because of confidence in low growth but rather because of ambi-
guity about which growth regime is currently in play.
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Figure 6
This figure shows the market price of uncertainty as a function of k for games I and II and for two different
values of the probability of being in a low-growth state.

8. Price-Earnings Ratios

To study price-earnings ratios, we apply the HMM simultaneously to the
technology shock process and an earnings process. Growth rates in technol-
ogy and earnings respond to the same two-state hidden Markov chain. For
the purposes of pricing, we treat the earnings process as a stream of divi-
dends: claims to consumption to be priced. These dividends are not an extra
source of consumption, but merely a specification of an intertemporal payoff
stream to be priced. Production takes place as before, but the growth rate in
earnings and technology both respond to the same two-state Markov chain.
The two Brownian motions that disguise this state are independent. Investors
use data on earnings and technology to make inferences about the common
hidden growth state. This formulation closely follows David and Veronesi
(1999) except that the state variable k comes into play in our analysis and
our aim is to study how a concern about robustness changes the prices. Its
discrete-time, full information counterpart has been used extensively in the
asset pricing literature [for example, see Cecchetti, Lam, and Mark (1993)
and Bonomo and Garcia (1996)].

The time series for technology and earnings are plotted in Figure 8. We
used data on reported earnings on the Standard & Poors Stock Price Index
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Figure 7
This figure shows the time series for the market price of uncertainty for games I and II. The market price of
uncertainty is measured as −h∗ for game I and as −g∗ · p̂ for game II.

divided by the price deflator for fixed investment. The earnings data were
obtained from DRI.

8.1 Earnings evolution
In our robust resource allocation problems we used the following model for
log technology and log earnings:[

dyt
det

]
=

[
�̂11 �̂12

�̂21 �̂22

]
stdt+

[
�y 0
0 �e

]
dBt�

where dBt is now a two-dimensional Brownian motion. We used the parame-
ter values reported in Table 4. These parameters were obtained by estimating
a discrete-time counterpart HMM using an EM algorithm. While we used a
two-state specification to compute prices, we were actually compelled to fit a
more complicated model to capture the seasonality in the earnings data.19 The

19 An independent, two-state seasonal Markov chain was introduced in the estimation. This seasonal chain only
altered the growth rates for earnings. According to our estimates, in one seasonal state growth is reduced by
.0836, and in the other it is enhanced by this same amount. The quarterly transition from reduced growth
seasonal state to high seasonal state is essentially one, while the transition in the other direction is .986. We
deliberately avoid the common practice of using a quarterly series of yearly averages of earnings. While the
averaging removes seasonality, it should also change how the signal extraction problem is posed and solved.
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Figure 8
In this figure we report the time series for the cumulative Solow residual and S&P earnings.

estimates of the parameters that govern the technology evolution were very
close to those obtained when we estimated the HMM using only the technol-
ogy data. In our calculations we used the same parameters for the technology
evolution for both models. (Compare Table 1 to Table 4.) Since the standard
deviation for the earnings process is substantially higher than that for tech-
nology, the implied state probability estimates for the technology-earnings
model are very close to those reported in Figure 1. The technology process
is the primary source of information about the hidden growth state.

Table 4
Parameters for the technology-earnings model

Parameter Description Quarterly value

�̂11 High technology growth 0�0114
�̂21 High earnings growth 0�0205
�̂12 Low technology growth −0�0290
�̂22 Low earnings growth −0�0612
�y Technology shock standard deviation 0�0192
�e Earnings shock standard deviation 0�1291
1/a12 Mean duration of the high-growth state 13�58
1/a21 Mean duration of the low-growth state 2�84

These parameters were estimated using time-series data on the Solow residual and earnings on the S&P 500 stock index. Since
the estimated evolution parameters for technology in the technology-earnings model were essentially the same as those estimated
without earnings, we used the same values for the common parameters in our calculations.
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8.2 Price calculation
To compute the price function for the HMM games, we use the familiar
implication that the local mean of the marginal utility scaled price should
be minus the marginal utility scaled dividend. The solutions to the respec-
tive robustness games provide us with the formula of the local mean of the
marginal utility scaled dividends.

To formalize this idea, we form a state vector z that contains �k� p̂� Y ∗� e�.
Let �1

z denote the drift implied by the Markov solution to HMM game I and
>1
z the corresponding diffusion matrix for the bivariate Brownian motion dB̂t

associated with the investors’ information set. The drift vector �1
z includes

terms which reflect how the worst-case perturbations h∗ affect the state vari-
ables and hence adjusts for model uncertainty. This is consistent with our
incremental pricing results above. Let ?1 denote the marginal utility scaled
pricing function that maps the composite state z into the marginal utility
scaled price. This function satisfies the partial differential equation

�1
z ·2?1 + 1

2
trace

(
>1
z

42?1

4z4z′

)
=− exp�e��C1�−0Y ∗� (15)

where C1 is the consumption function implied by the Markov solution to
game I. The left-hand side of this equation is the local mean of the marginal
utility scaled price and the right-hand side is the negative of the marginal
utility scaled dividend (measured by earnings). There is an analogous pricing
equation for HMM game II.

For computational purposes, it is convenient to transform the partial dif-
ferential equation [Equation (15)]. The price-dividend ratio in this economy
can be shown to depend only on k and p̂ and not on Y ∗ and e.20 We exploit
this reduced dependence in solving for the equilibrium price of an earnings
claim. The figures that follow report the price-dividend ratio as a function of
k and p̂ without the marginal utility scaling.

8.3 Results and figures
We solved for price-earnings functions for the HMM robustness games.
For comparison we also computed the full information prices and the . =
 HMM prices. The former prices presume the growth state is known to
investors and the latter prices abstract from robustness.

Figure 9 shows how price-earnings ratios vary with the probability of being
in the low-growth state. These functions decrease with that probability and
are essentially linear. When investors are confident they are in the low-growth
state, the price is lower. The HMM robustness games imply a lower price-
earnings ratio than the HMM benchmark without robustness. A concern about

20 The state variables Y ∗ and e can be eliminated by dividing both sides by exp�e�Y ∗ and solving for ?1

Y ∗ exp�e�

instead of for ?1.
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Figure 9
This figure displays the price-earnings ratio as a function of the probability of being in the low state for HMM
games I and II. For comparison, it also displays the price-earnings ratio for the HMM economy that abstracts
from robustness (. =). The functions are plotted by fixing capital at its median value.

model misspecification makes the security less attractive to investors. The
corresponding prices for the full information robustness game are 16.43 for
the high state and 14.25 for the low state.

Figure 10 shows how the price-earnings ratios vary with k (the capital-
technology ratio). The relation is increasing for all of the robustness games.
When capital is high relative to the technology, the equity asset is more valu-
able to investors. Price-earnings ratios are predicted to be more responsive
to historical movements in the capital-technology ratio than to movements in
growth-state probabilities. While both k and p̂ respond to common Brownian
motion shocks, the capital-technology channel is more potent than the sig-
nal extraction channel as a source of fluctuation for price-earnings ratios.
This implication for the pricing of the infinite earnings stream is in contrast
to the implied behavior of local prices. Recall that the local factor prices
of the Brownian increments are very responsive to changes in growth-state
probabilities, but in a nonlinear way.

The median price-earnings ratio in the data for our sample is 16.46. As
seen in Figures 9 and 10, the robust decision games bring this level more
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Figure 10
This figure displays price-earnings ratios as functions of the capital-technology ratio k for HMM games I and
II. For comparison, it also reports the corresponding functions for the full information robustness game. The
growth-state probabilities p̂ are fixed at the designated values.

in line with these historical data. In fact, the hidden information games with
the chosen values of . have median price-earnings ratios that are too low. In
contrast, the median price-earnings ratio for the . = benchmark is much
too large.

While robustness delivers an empirically plausible downward shift in the
price-earnings ratio, the model-based time-series trajectories do not track
well some of the movements in the actual price-earnings ratios. The model-
based, price-earnings trajectories are dominated by changes in the capital-
technology ratio k. The capital-technology ratio in our model is stationary,
with increases in recession states followed by decreases in high-growth states.
Thus the model predicts that the long boom evident in our data from 1992
onward should result in a falling capital-technology ratio and therefore a
corresponding drop in the price-earnings ratio. This predicted decline is dis-
played in Figure 11, which plots the price-earnings time series implied by the
full information and HMM robustness games. During this period the capital-
technology ratio fell in the data as in the model. However, during much of
this time span the stock market was booming and the price-earnings ratios
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Figure 11
This figure plots the time series for the logarithm of the price-earnings ratio implied by models of robust
decision making.

in the data increased dramatically. Clearly other factors outside of the model
would be necessary to explain this dramatic runup in asset prices. Moreover,
actual price-earnings ratios are much more variable than those implied by
our models.21 Nearly all of the variability in the price-earnings ratio in our
model reflects changes in the capital-technology ratio. The models’ price-
earnings ratios inherit the smoothness in the capital-technology trajectory.
Perhaps an approximating model with lower-frequency movements in tech-
nology growth rates would enhance the role of growth-state probabilities in
price-earning ratios. HMMs of business cycle growth, however, are appar-
ently ill equipped to explain price-earnings ratios even when robustness is
added.

9. Conclusion

This article explores how a representative decision-maker’s concern about
model misspecification embeds itself in the time-series evolution for quan-
tities and prices. We considered an environment in which there are abrupt

21 The volatility in the logarithm of the price-earnings ratio in the data is four to five times that of our models.
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movements in the time series and decision makers use historical data to
update their beliefs about these movements. Abrupt movements are formal
changes in the growth rates of technology and earnings in a stochastic growth
model. We find the following:

• Factor “risk prices” encode model uncertainty premia in the model of
robust decision making. These factor prices are largest when, under the
approximating model, investors are most unsure of the hidden state.
Thus there is an intriguing interaction between ambiguity, as reflected
by state probabilities, and model uncertainty, as encoded in the local
factor prices.

• While a concern about robustness brings the overall level of model-
based price-earnings ratios closer to that in postwar data, the time series
trajectories implied by the model do not track well the postwar data.

We nest an HMM rational expectations model inside our models of investor
robustness by setting . = . Thus some of conclusions carry over to this
rational expectations model. Factor risk prices are predicted to be largest
when investors are most unsure of the hidden state. Even abstracting from
the overall level, the rational expectations model-based price-earnings ratio
does not track well that observed in postwar data. The HMM information
structure we used apparently does little to confront the well-known excess
volatility in security prices.

We have used a stochastic growth model common in macroeconomics and
finance. This stylized model has been an important benchmark for macroeco-
nomics, and so presents a good laboratory for understanding how a concern
about misspecification can alter implications. On the other hand, the stochas-
tic growth model has known empirical deficiencies. Allowing for robust-
ness repairs only some of these shortcomings. Richer transient dynamics
and possibly multiple sectors and consumers are needed to produce models
with better empirical underpinnings. In particular, richer learning dynam-
ics may result in quantitatively important asymmetries in uncertainty pre-
mia in expansions and recessions. For example, Chalkley and Lee (1998)
and Veldkamp (2000) build models in which business cycle asymmetries are
linked to learning about an unobserved state. The asymmetry is driven by
the interaction between risk aversion and private information in the Chalkley
and Lee (1998) model. A concern about model misspecification could well
imitate an enhancement of risk aversion in this environment and amplify the
asymmetry between recessions and booms. Veldkamp shows how investors’
decisions to initiate and terminate projects create more public information
about the hidden state in the economy in good times than bad times. Intro-
ducing this feature into a model like ours could make uncertainty premia
vary more between low-growth and high-growth regimes.
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Appendix A: Generators

To represent the robustness games, we will make use of the generator of Markov processes. It is
therefore useful to define it here briefly.22 In our applications the Markov state contains either
�k� s� Y ∗� in the full information benchmark or �k� p̂� Y ∗� in the hidden information case.

A Markov process can be specified in terms of the transition probabilities. Associated with
each transition interval is a conditional expectation operator. The family of such operators is a
Feller semigroup. The time derivative of the semigroup at the zero interval gives the generator
of the semigroup. The generator captures the local evolution of the process. Since the family
(semigroup) of conditional expectation operators can be built from the generator, we may model
a Markov process by specifying its generator.

A.1 Full information
In the full information case, the state space is � = �+ ×�×�+, where � is the real line,
�+ = �0�+�, and � is the collection of coordinate vectors in �n. Consider a function f

mapping this state space into the real line �. This function can be thought of equivalently as a
@ ( �+ ×�+ → �n, where each coordinate function of @ is matched to a state s. If we begin
with a function f �k� s� Y ∗� we may form

@�k�Y ∗�=−−−−−−→
f �k� s� Y ∗��

The � operation stacks f �k� s� Y ∗� for the n values of s.
To construct a Feller semigroup of conditional expectation operators we consider the space

of functions that are continuous on the one-point compactification of the state space �. The
collection of the restrictions of these functions to � is denoted by Ĉ. The conditional expectation
operator for interval & can be represented as

�& f �k� s� Y
∗�= E

[
f �k& � s& � Y

∗
& ��k0 = k� s0 = s� Y ∗ = Y ∗

0

]
for any & ≥ 0 and for any f in Ĉ. The generator of the semigroup is the time derivative computed
using the metric induced by the sup norm in �k�Y ∗�:

�f = lim
&↓0

�& f − f

&

for each of the n values of s.
The generator is composed of two parts, one relative to the diffusion process for k and Y ∗,

and one relative to the jump process s. The generator of the bivariate process for k and Y ∗

(holding s fixed) can thus be depicted in terms of a drift � and � . � and � are column vectors
containing, respectively, the drifts and the diffusion coefficients of k and Y ∗. The exact forms of
� and � depend on whether we are considering the nonrobust or the robust decision problems,
since the evolution of these processes can be perturbed in the robustness games.

At least on the space C2
K of twice continuously differentiable (in k and Y ∗) functions with

compact support in the interior of �+×�+, the generator is given by a second-order differential
operator:

�f = � ·2f + 1
2
� ′Bf��

where 2f is the gradient and �f the Hessian matrix (with respect to k and Y ∗).

22 For a rigorous treatment, see Ethier and Kurz (1986).
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The generator for the jump process s can be depicted in terms of the matrix A as

�f �s�= s′A
−−→
f �s��

The composite generator under complete information is formed by adding the two components,

�f =�f +�f �

A.2 Partial information
In the case of partial information, the state variables are x = �k� p̂� Y ∗� and the state space
is � = �+ ×	 ×�+, where 	 is an n− 1-dimensional set of �n appropriate for a vector of
nondegenerate probabilities. The semigroup is again defined using a one-point compactification.
Since x is now a diffusion, the resulting generator, denoted �̂, is

�̂f = �̂ ·2f + 1
2
�̂ ′Bf �̂�

where 2f and Bf are the gradient and the Hessian with respect to the composite state vector
�k� p̂� Y ∗�, and �̂ and �̂ are the column vectors containing the drift and the diffusion coefficients.
The exact expressions for �̂ and �̂ , depend on the robustness game, and were denoted in the
article by �i

x and �i
x , i = 1�2 depending on the game.

The domain of the Feller semigroup is sufficiently rich for the purposes of constructing
Markov processes, but it is too confining for the purposes of control theory, since the value
functions for our resource allocation games are unbounded. The domain of the generator of a
semigroup may be extended to unbounded functions f by finding functions g such that

Mt = f �xt�− f �x0�−
∫ t

0
g�xu�du� (16)

x ∈ �, is well defined and a local martingale. In this case we use the notation �f or �̂f to
denote the function g used in this construction. � and �̂ are called the extended generators of
the corresponding Markov processes [see Ethier and Kurz (1986) and Davis (1993)].

Appendix B: HJB Equations

In the case of full information and no robustness, using the generator notation previously intro-
duced, the resulting HJB equation is

max
c
Y ∗U�c�+�W�k� s� Y ∗�= 0�

For the nonrobust, hidden information case, the equation is

max
c

Y ∗U�c�+ �̂W�k� p̂� Y ∗�= 0�

In the robustness games, we introduce a minimizing player and an entropy penalty. The
corresponding equation for game II is

max
c

min
h
Y ∗

[
U�c�+.

h2

2

]
+ �̂W 1�x�= 0�

By substituting the formula for �̂, we get Equation (12).
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For game II, we have

max
c

min
g
Y ∗

[
U�c�+ .

2

∑
i

�gi�2p̂i
]
+ �̂W 2�x�= 0�

which results in Equation (13).
In all the cases, the value functions are linear in Y , W�x�= Y ∗V �k� p̂�. This can be verified

by substituting this guess in the HJB equations, working out the algebra, and noticing that Y ∗

can be factored out of the resulting equations. Numerically, therefore, one need to solve only
for V , which depends on fewer state variables than W .

Given V , we can compute the decision rules for c and k, and the prices of risk and uncertainty,
7m and 7u, using the formulas presented in the text. Note that while 7m only depends on the
derivatives of V , the distortions g and h also depend on the level of V ; therefore it is important
to compute precisely both V and its derivatives.

Appendix C: The Algorithm to Compute the Value Functions

The HJB equations are second-order partial differential equations in V . To solve for V , we
adapt the algorithm described by Candler (1999). The idea is to fix the decision rules, solve the
resulting linear, second-order partial differential equations, update the decision rules with the
new solution for the value functions, and iterate until convergence.

The algorithm is similar for all the games considered, so we will explain it here in general
terms. Let z denote the arguments of V (k and s for the full information case, k and p̂ for the
hidden information ones), and i the control variables (c for the nonrobust full information case,
c and h for game I, c and g for game II). Since we consider the case of only two possible
values for the mean rate of growth of the technology, there is only one probability in z, and
p̂L = 1− p̂H . Let HJB�V � i� be the differential equations described above, keeping the decision
rule i fixed. Following Candler (1999), we explicitly introduce time and solve

4V �z� t�

4t
+HJB�V �z� t�� i�= 0�

This corresponds to the backwards iteration often used to solve the dynamic programming
problem. We start at time T with some guess V �z� T � and then solve the problem backwards
one time period.

The algorithm therefore consists of the following:

1. Start with a guess V �z� T �.
2. Given V �T � z�, compute the optimal decision rules iT .
3. Given iT , solve the second-order partial differential equation backwards one time interval

Bt, obtaining the new value function V �z� T −Bt�,

4V �z� T −Bt�

4t
+HJB�V �z� T −Bt�� iT �= 0�

The equation is linear and we use an implicit, upwind, finite difference method.
4. Given V �z� T −Bt�, compute the optimal decision rules iT−Bt and iterate until the dis-

tance between V �z� t� and V �z� t−Bt� is small.

As mentioned in the previous section, we can use the numerical solution for V to compute the
decision rules and the prices of risk. The derivatives of V necessary to evaluate these variables
are computed numerically using central differences. The numerical solution for V is also used as
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an input for the pricing equation [Equation (15)], which is then solved using a finite difference
method.
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